
 

 

Introduction to Windows PowerShell Scripting for Microsoft 
SharePoint Server 2010  

Contents 
Introduction to Windows PowerShell Scripting for Microsoft SharePoint Server 2010 .......... 1 

Before You Begin ................................................................................................................. 2 

Estimated time to complete this lab.................................................................................... 2 

Objectives ......................................................................................................................... 2 

Prerequisites ...................................................................................................................... 2 

Lab scenario ...................................................................................................................... 2 

Exercise 1: Explore the SharePoint 4.0 Management Console ............................................... 3 

Getting Started with the Management Console .................................................................. 3 

Retrieving Information from the Server Farm .................................................................... 4 

Creating Sites and Setting Properties ................................................................................. 6 

Exercise 2: Get More from Windows PowerShell .................................................................. 9 

Combining Cmdlets ........................................................................................................... 9 

Using Filters and Wildcard Characters ............................................................................. 11 

Enumerating Collections .................................................................................................. 14 

Exercise 3: Perform Advanced Tasks by Using Windows PowerShell ................................. 15 

Using Local Variables ..................................................................................................... 15 

Using the Object Model ................................................................................................... 17 

Conclusion .......................................................................................................................... 21 

 



 

 

 

Before You Begin 

Estimated time to complete this lab 

60 minutes 

Objectives 

After completing this lab, you will be able to: 

 

 Find your way around the SharePoint 4.0 Management Console and interact with 

SharePoint Web applications, site collections, and sites. 

 Use scripting techniques in the Windows PowerShell™ command-line interface, such 

as pipes, filters, wildcards, and enumerations, for administration of Microsoft® 

SharePoint® Server 2010. 

 Explain how to create and assign variables and use the SharePoint object model from 

Windows PowerShell. 

Prerequisites 

Before working on this lab, you must have some experience of working with previous 

versions of SharePoint Products and Technologies. 

Lab scenario 

The objective of this hands-on lab is to introduce you to using Windows PowerShell to 

administer a SharePoint Server 2010 environment. The lab begins with a beginners’ 

introduction to the SharePoint 4.0 Management Console, and then explores how you can use 

progressively more advanced Windows PowerShell scripting techniques to administer your 

SharePoint server farm. 

  



 

 

 

Exercise 1: Explore the SharePoint 4.0 Management Console 

If you are familar with previous versions of SharePoint Products and Technologies, you have 

probably used the stsadm command-line tool to perform various administrative tasks. You 

may have used batch files to automate sequences of stsadm commands. You may even have 

developed your own tool applications by programming against the SharePoint object model. 

 

Windows PowerShell offers a new approach to administration in SharePoint Server 2010 

through the SharePoint 4.0 Management Console. Windows PowerShell combines the 

immediacy of the command line with the power and flexibility of managed code. In this 

exercise, you will explore the SharePoint 4.0 Management Console and learn how to use 

Windows PowerShell to accomplish some simple administrative tasks. 

Getting Started with the Management Console  

In this task, you will familiarize yourself with the SharePoint 4.0 Management Console, learn 

how to find help and information, and start using Windows PowerShell commands (known as 

“cmdlets”). 

 

1. Ensure that you are logged on to the SP2010 virtual machine as 

CONTOSO\Administrator with a password of pass@word1 

2. Launch the SharePoint 4.0 Management Console. To do this, on the Start menu, point to 

Administrative Tools, and then click SharePoint 4.0 Management Console. 

 

 
 

1. At the PS > prompt, type the command in the following code example, and then press 

ENTER. 

 
Get-Command –pssnapin "Microsoft.SharePoint.PowerShell" |more 

 

This command displays all of the available cmdlets in the 

Microsoft.SharePoint.PowerShell namespace. Press the SPACEBAR to page down the 

list. Notice that there are hundreds of cmdlets that relate to a broad range of 

administrative tasks. 

 

Note: You can also type gcm as shorthand for Get-Command. 

 

To get help and information about a particular cmdlet, you can use the get-help <cmdlet-

name> command. 

 

2. Type the command in the following code example, and then press ENTER. 

 
get-help Get-SPSite 

 



 

 

The Command Prompt window displays information about how to use the Get-SPSite 

cmdlet.  

As you might have guessed, cmdlets that include the Get prefix return information. You 

can use these cmdlets to write information to the console, or to provide information to 

other cmdlets. 

 

You can also use the get-help <cmdlet-name> -detailed or get-help <cmdlet-name> -

full command options to retrieve more detailed technical information about a specific 

cmdlet. Some of these help files can be very long, so remember that you can append 

|more to any command if you want to page the command output. 

 

3. Type the command in the following code example, and then press ENTER. 

 
Get-SPSite –WebApplication http://moss.contoso.com 

 

This command returns all of the site collections that exist in the http://moss.contoso.com 

Web application. 

 

 
 

You can use the same approach to retrieve information at each level of the SharePoint 

architecture. For example, you can retrieve all of the Web applications in your server 

farm, all of the site collections within a specific Web application, or all of the individual 

sites within a site collection. 

Retrieving Information from the Server Farm  

Windows PowerShell provides a highly sophisticated and very powerful interactive scripting 

language. This can be somewhat daunting to new users. Fortunately, the SharePoint snap-in 

for Windows PowerShell includes many straightforward cmdlets that can retrieve information 

from your SharePoint server farm without requiring the ability to write sophisticated scripts. 

In addition to being an invaluable tool in your day-to-day administrative tasks, these cmdlets 

also provide a great starting point to learn more about Windows PowerShell. In this task, you 

will explore cmdlets that retrieve information from a SharePoint server farm. 

 

When you are not sure which cmdlet you need to perform a particular task, you can use the 

Get-Command cmdlet to discover what is available. For example, suppose you want to 

review which cmdlets can retrieve information from SharePoint Server 2010. 

 

1. Type the command in the following code example, and then press ENTER. 

 
Get-Command Get-SP* |more 

 



 

 

The Command Prompt window displays the names of all of the cmdlets that start with 

Get-SP. The verb Get is common to all cmdlets that return information, and the noun 

prefix SP is common to all SharePoint cmdlets. The asterisk is a wildcard character. 

 

Note: You can use the same approach to find cmdlets relating to specific areas of 

functionality. For example, Get-Command *Service* returns all service-related cmdlets. 

 

We will now explore some of the more commonly used Get cmdlets. 

 

2. Type the command in the following code example, and then press ENTER. 

 
Get-SPServiceApplication | Select ID, Name 

 

The Command Prompt window displays the ID and Name properties of each service 

application that is running in the server farm. Don't worry about the pipe character and 

the Select syntax for now; we will study this later in the lab. Let’s consider a more 

realistic example. Suppose the event logs identify a problem with a service application 

and provide a globally unique identifier (GUID). You need to find out which service 

application is causing the problem. 

 

3. Type the command in the following code example, and then press ENTER. 

 
Get-SPServiceApplication –Identity 25b17ac2-4c52-4887-8ed6-f066d50ea7e3 

 

The Command Prompt window provides details of the service application and identifies 

the corresponding Internet Information Services (IIS) application pool. 

 

 
 

Now let’s take a look at feature management. In the course of many routine deployment 

and troubleshooting tasks, you will need to find the GUID that corresponds to a particular 

SharePoint feature. This was a somewhat laborious task in previous versions of 

SharePoint Products and Technologies, and administrators would often resort to full-text 

searches of the Features folder on the file system. SharePoint Server 2010 provides a far 

more straightforward approach to this problem through Windows PowerShell. 

 

4. Type the command in the following code example, and then press ENTER. 

 
Get-SPFeature 

 

The Command Prompt window provides a list of all of the installed features in the server 

farm, together with an ID and scope for each feature. 

 

In addition to retrieving a list of all of the installed features in a server farm, you may also 

want to retrieve a list of all of the features that are activated to a particular scope. To do 



 

 

this, you can add switch parameters to the Get-SPFeature cmdlet (Site, Web, 

WebApplication, or Farm). 

 

5. Type the command in the following code example, and then press ENTER. 

 
Get-SPFeature –Site http://moss.contoso.com 

 

The Command Prompt window provides a list of all of the features that are activated on 

the moss.contoso.com site collection. 

 

 
 

One particularly useful application for administrators of Windows PowerShell for 

SharePoint Server 2010 is the built-in ability to parse SharePoint log files. 

 

6. Type the command in the following code example, and then press ENTER. 

 
Get-SPLogEvent –Limit 10 

 

The Command Prompt window displays the last 10 messages that were written to the log 

files. 

 

 
 

The Limit parameter is common to many Get cmdlets. Where the Limit parameter is 

available, the cmdlet returns 20 rows by default if you do not specify a value. 

Alternatively, to return all results, you can specify –Limit All.  

 

In its current format, this information is not particularly informative. As you work 

through the remaining exercises in this lab, you will see how you can use increasingly 

sophisticated techniques to filter and manipulate the information that these cmdlets return. 

Creating Sites and Setting Properties 

In addition to retrieving information, the SharePoint snap-in for Windows PowerShell 

includes cmdlets that can set properties, create new items, and perform a wide range of other 



 

 

actions. In this task, you will explore how you can put these cmdlets to use in your 

SharePoint server farm. 

 

Let’s start by examining the Set-SPSite cmdlet. You can use this cmdlet to configure a range 

of properties on a specific site collection. 

 

1. Type the command in the following code example, and then press ENTER. 

 
Set-SPSite –Identity http://moss.contoso.com –SecondaryOwnerAlias 

CONTOSO\jimd 

 

2. Launch the Central Administration Web site. To do this, on the Start menu, point to 

Administrative Tools, and then click SharePoint 4.0 Central Administration. 

3. On the Central Administration home page, click the Application Management heading. 

4. Under Site Collections, click Change site collection administrators. 

5. On the Site Collection Administrators page, verify that Jim Daly has been added as a 

secondary site collection administrator. 

 

 
 

In isolation, it may have been quicker to specify the secondary site collection 

administrator through the Central Administration user interface. However, imagine that 

you want to add a secondary site collection administrator to 200 site collections. Rather 

than configuring two hundred site collections manually in Central Administration, you 

could write a few lines of Windows PowerShell script to loop through the site collections 

and change the site collection administrator on each one. 

 

For the final part of this task, let’s take a look at how you can use Windows PowerShell 

to create and delete sites. 

 

6. Switch back to the SharePoint 4.0 Management Console. Type the command in the 

following code example, and then press ENTER. 

 
New-SPSite –Url http://moss.contoso.com/sites/powershell –OwnerAlias 

CONTOSO\Administrator -Name "PowerShell Site" -Template STS#0 

 

Note: If you do not specify a template here, you will be directed to a template picker page 

when you browse to the site. 

 

7. When the command returns, switch to the browser window and browse to 

http://moss.contoso.com/sites/powershell. Verify that a new team site has been created 

at the URL. 

http://moss.contoso.com/


 

 

 

 
 

8. Switch back to the SharePoint 4.0 Management Console. Type the command in the 

following code example, and then press ENTER. 

 
Remove-SPSite –Url http://moss.contoso.com/sites/powershell –OwnerAlias 

CONTOSO\Administrator -Name "PowerShell Site" -Template STS#0 

 

9. At the confirm prompt, type Y and then press ENTER. 

10. When the command returns, switch to the browser window and browse to 

http://moss.contoso.com/sites/powershell. Verify that the site no longer exists.



 

 

 

Exercise 2: Get More from Windows PowerShell 

Up to this point, you have used simple SharePoint cmdlets in isolation. When you use 

cmdlets in this way, it can be hard to see the advantages of Windows PowerShell over 

standard, noninteractive command-line tools such as stsadm. The real benefits to 

administrators become apparent when you start to use some of the more sophisticated 

features of Windows PowerShell, such as combining cmdlets, creating filters, and using 

wildcard characters. In this exercise, you will explore how to use these features to your 

advantage when you perform administrative tasks in the SharePoint 4.0 Management 

Console. 

Combining Cmdlets 

In this task, you will learn how to combine cmdlets and how to pass data from one cmdlet to 

another. 

 

1. In the SharePoint 4.0 Management Console, type the command in the following code 

example, and then press ENTER. 

 
Get-Help Get-SPWeb 

 

 
 

Notice that the Site parameter accepts an object of type SPSitePipeBind. This indicates that, 

in addition to providing a value for the parameter directly, you can also use the pipe character 

"|" to pass in the value from the output of another cmdlet.  

 

2. Type the command in the following code example, and then press ENTER. 

 
Get-SPSite http://moss.contoso.com | Get-SPWeb 

 

 
 

What does this command represent? You are using the Get-SPSite cmdlet to get a 

reference to the site collection at moss.contoso.com, and then passing this reference to the 

Get-SPWeb cmdlet. The Get-SPWeb cmdlet then returns all of the sites at the passed-in 



 

 

site collection. This is functionally equivalent to the command in the following code 

example. 

 
Get-SPWeb –Site http://moss.contoso.com 

 

Why use the pipe character, if you can achieve the same result without it? As your 

Windows PowerShell scripts become more sophisticated, you may not always know the 

values that you need to pass into a cmdlet in advance. As you progress through the 

remainder of this lab, you will see examples where this is the case. 

 

You can also use cmdlets directly to provide parameter values for other cmdlets. Consider 

the Get-SPLogEvent cmdlet that we examined earlier. Suppose you wanted to retrieve 

all events that happened in the last five minutes. 

 

3. Type the command in the following code example, and then press ENTER. 

 
Get-SPLogEvent –Limit all –StartTime (Get-Date).AddMinutes(-5) 

 

The Command Prompt window displays a list of the events that occurred in the last five 

minutes. You have yet to configure event log throttling in your server farm, so you will 

notice that the list is rather long. 

 

What is actually happening here? The Get-Date cmdlet returns an object of type 

DateTime. The DateTime class includes a method named AddMinutes, which returns 

the current date and time adjusted by the number of minutes that you pass in. The Get-

SPLogEvent cmdlet uses this value as the input for the StartTime parameter. 

 

If you use the same approach to specify the EndTime parameter, you can retrieve all of 

the events that occurred in a specific time window. 

 

4. Type the command in the following code example, and then press ENTER. 

 
Get-SPLogEvent –Limit all –StartTime (Get-Date).AddMinutes(-10) –EndTime 

(Get-Date).AddMinutes(-5) 

 

The Command Prompt window displays a list of the events that occurred between 10 

minutes ago and 5 minutes ago. 

 

One final technique to consider in this task is how you can use the select keyword to 

process the results that a cmdlet returns. For example, suppose you want to retrieve a list 

of all of the event categories in which an event of Warning severity has occurred. 

 

5. Type the command in the following code example, and then press ENTER. 

 
Get-SPLogEvent –Limit All –MinimumLevel Warning | Select Category -

Unique 

 

The Command Prompt window indicates that the only warning has occurred in the 

Claims Authentication category. 

 



 

 

 
 

You can use the select keyword in conjunction with any property of the objects that you 

are retrieving. In this case, you are retrieving objects of type SPLogEvent. The 

SPLogEvent includes a property named Category. 

Using Filters and Wildcard Characters 

In this task, you will explore the use of filters and wildcard characters to refine the 

functionality of SharePoint cmdlets. 

 

To start with, let’s look at the use of a simple wildcard character, the asterisk (*). Suppose 

you want to retrieve a list of site collections on the managed path 

http://moss.contoso.com/sites/. 

 

1. Type the command in the following code example, and then press ENTER. 

 
Get-SPSite http://moss.contoso.com/sites/* 

 

Note: This expression is shorthand for the command in the following code example. 
Get-SPSite –Identity http://moss.contoso.com/sites/* 

 

The Command Prompt window displays a list of site collections that lie on the managed 

path that you specified. 

 

 
 

The ability to use wildcard characters can be particularly useful when you combine 

cmdlets. For example, suppose you want to make Sanjay Shah the secondary site 

collection administrator for all site collections on the managed path 

http://moss.contoso.com/sites/. 

 

2. Type the command in the following code example, and then press ENTER. 

 
Get-SPSite http://moss.contoso.com/sites/* -Limit All | Set-SPSite –

SecondaryOwnerAlias CONTOSO\sanjays 

 

At this point, the efficiency of Windows PowerShell should start to become apparent. 

Using a single command, you have changed the secondary site collection administrator on 

multiple sites.  

 

Note: You can only use the Get-SPSite cmdlet if you are already a site owner. If this is 

not the case, you can use the Get-SPSiteAdministration cmdlet to retrieve the site object. 



 

 

 

To verify that the command has worked, you can use another cmdlet with the select 

keyword that we discussed earlier. 

 

3. Type the command in the following code example, and then press ENTER. 

 
Get-SPSite | Select Url, SecondaryContact 

 

The Command Prompt window displays a list of site collections by URL and secondary 

site collection administrator. You can see that all of the sites on the 

http://moss.contoso.com/sites/ managed path now have Sanjay Shah as the secondary site 

collection administrator. 

 

 
 

A few cmdlets also provide a Filter parameter that you can use to constrain the results 

that are returned. 

 

4. Type the command in the following code example, and then press ENTER. 

 
Get-SPSite –Filter {$_.SecondaryOwner –eq "CONTOSO\sanjays"} 

 

 
 

The Command Prompt window displays a list of all site collections for which Sanjay 

Shah is a secondary site collection administrator. Filter strings always take the format 

{$_.PropertyName <operator> "FilterValue"}. The $_ variable represents the data in 

the pipe; in other words, it is a reference to the type that the query returns, which, in this 

case, is SPSite. The operator can take several forms: 

 

 -lt (less than) 

 -le (less than or equal to) 

 -eq (equal to) 

 -ge (greater than or equal to) 

 -gt (greater than) 

 -ne (not equal to) 

 -like (matches a wildcard character pattern) 

 -notlike (does not match a wildcard character pattern) 



 

 

 

Another approach to filtering is to pass your cmdlet output to the Where-Object cmdlet. 

You can use the question mark (?) as shorthand for Where-Object. This cmdlet filters 

the objects that are passed along the command pipeline according to a filter string that 

you specify. You can use Where-Object to filter the output from any cmdlet. 

 

Note: Where available, the Filter parameter provides a more efficient way to filter data 

than the Where-Object cmdlet. When you use the Filter parameter, the entire query is 

executed on the server, whereas piping data to the Where-Object cmdlet invokes a round-

trip to the Windows PowerShell client. However, the Where-Object cmdlet is universally 

available, whereas the Filter parameter is only available on a few cmdlets. The Where-

Object cmdlet also provides extra functionality, such as enabling you to use match and 

notmatch operators with regular expressions in the filter string, which are unavailable 

when you use the Filter parameter. 

 

5. Type the command in the following code example, and then press ENTER. 

 
Get-SPLogEvent | ?{$_.Level –eq "High"} | Select Category, Message 

 

 
 

The Command Prompt window displays a list of all log events where the value of the 

Level property is High.  

 

You can also use Regular Expressions to constrain the results that a cmdlet returns. The 

Get-SPSite cmdlet includes a RegEx parameter that causes the URL provided for the 

Identity parameter to be treated as a Regular Expression. Suppose you want to retrieve a 

list of all site collections on the http://moss.contoso.com/sites/ and the 

http://moss.contoso.com/my/ managed paths. 

 

6. Type the command in the following code example, and then press ENTER. 

 
Get-SPSite http://moss.contoso.com/(sites|my)/.* -RegEx –Limit All | 

Select Url 

 

 
 



 

 

The Command Prompt window displays a list of all of the site collections that lie on the 

managed paths that you specified. 

 

Enumerating Collections 

When it comes to repetitive tasks, the ability to loop through collections of objects is an 

invaluable tool in the armory of the Windows PowerShell scriptwriter. In this task, you will 

learn how to enumerate collections and perform actions on each object in the collection. 

 

Windows PowerShell includes the ForEach-Object cmdlet (or foreach in shorthand) that 

you can use to enumerate over a result set. To use the ForEach-Object cmdlet, you must 

pass in a collection of objects, and you must provide the actions to perform on each object 

within curly brackets. Suppose you want to provision a team blog site on every site collection 

on the http://moss.contoso.com/sites/ managed path. 

 

1. Type the command in the following code example, and then press ENTER. 

 
Get-SPSite http://moss.contoso.com/sites/* -Limit All | foreach{New-

SPWeb –Url ($_.Url + "/blog") –Template BLOG#0} 

 

 
 

The Command Prompt window returns a list of URLs at which new blog sites have been 

created. 

 

2. Browse to one or more of the URLs to verify that the blog sites were created correctly. 

 

 

 

In the final exercise of this lab, when we discuss assigning variables and using the 

SharePoint object model, you will see more sophisticated ways of working with the 

ForEach-Object cmdlet. 

 



 

 

Exercise 3: Perform Advanced Tasks by Using Windows PowerShell 

In the previous exercise, you saw how some of the features of Windows PowerShell enable 

you to create scripts that go way beyond the capabilities of previous command-line tools such 

as stsadm. In this exercise, you will take this a step further and learn how you can use the full 

power of the SharePoint object model from the Windows PowerShell command prompt. 

Using Local Variables 

The ability to create and assign values to local variables is a powerful benefit when you use 

Windows PowerShell. However, if you have previously worked with the SharePoint object 

model, you will know that certain objects, such as SPSite and SPWeb, need to be managed 

carefully to avoid excessive memory use. In this task, you will learn how to assign and 

dispose of local variables in your Windows PowerShell scripts for SharePoint. 

 

The SharePoint snap-in for Windows PowerShell provides two key cmdlets that you can use 

to manage variable assignment: Start-SPAssignment and Stop-SPAssignment.  

 

1. In the SharePoint 4.0 Management Console, type the command in the following code 

example, and then press ENTER. 

 
Start-SPAssignment -Global 

 

2. Type the command in the following code example, and then press ENTER. 

 
$Web = Get-SPWeb http://moss.contoso.com 

 

3. Type the command in the following code example, and then press ENTER. 

 
$Web.Description = "Testing variable assignment!" 

 

4. Type the command in the following code example, and then press ENTER. 

 
$Web.Update() 

 

5. Type the command in the following code example, and then press ENTER. 

 
Stop-SPAssignment -Global 

 

 
 

In this case, we are using the global assignment model. After we call Start-SPAssignment –

Global, any objects that we create are assigned to a global assignment store. This ensures that 

the objects remain available while we use the object model to set properties and call methods 

(more on this later). When we call Stop-SPAssignment –Global, any objects in the global 

assignment store are disposed of and the memory is released. 

 



 

 

Note: Use global assignment with caution! For example, if you use Start-SPAssignment –

Global and then call Get-SPSite –Limit ALL, every site collection object will be loaded into 

memory. In a live server farm, this is likely to cause serious performance issues. 

 

6. Open a browser window and browse to http://moss.contoso.com. 

7. Verify that the site description reflects your changes. 

 

 
 

When you write complex, long-running scripts, you may require more granular control 

over how memory is assigned and released. Rather than assigning all of your variables to 

a global assignment store, you can use named assignment stores that enable you to assign 

and release different objects at different points in your script. 

 

Suppose you want to create a news site on every site collection on a particular managed 

path, and then set a few properties on each news site.  

 

8. Type the command in the following code example, and then press ENTER. 

 
$SiteScope = Start-SPAssignment 

 

9. Type the text in the following code example, and then press ENTER. 

 
Foreach($Site in ($SiteScope | Get-SPSite 

http://moss.contoso.com/sites/*)) 

  

Notice that, when you press ENTER, the Windows PowerShell prompt changes to a 

double angle bracket (>>). This indicates that Windows PowerShell recognizes that your 

procedure is incomplete, and will accept multiline input without attempting to execute 

every time you press ENTER. 

 

10. Type the text in the following code example and press ENTER after each line. 

 
{ 

Get-SPFeature PublishingSite | Enable-SPFeature –Url $Site.Url 

New-SPWeb –Url ($Site.Url + "/news") 

$WebScope = Start-SPAssignment 

$Web = $WebScope | Get-SPWeb ($Site.Url + "/news") 

$Web.Title = "Team News" 

$Web.Description = "All the latest news and information" 

$Web.Update() 



 

 

Stop-SPAssignment $WebScope 

} 

Stop-SPAssignment $SiteScope 

 

11. Press ENTER again. The entire command should now execute. 

 

 
 

In this case, you are creating two different assignment scopes. The scope named 

$SiteScope is used to store references to site collections and is not cleared until the entire 

procedure is complete. The scope named $WebScope is used to store references to 

individual sites and is cleared after each individual site is processed. 

 

12. Browse to one of the URLs that the Command Prompt window returns and verify that the 

News site has been created and configured properly. 

 

 
 

Note: In addition to enabling you to create and assign values to local variables, Windows 

PowerShell also provides access to environment variables. For example, you can use 

$env:os to retrieve the local operating system, or $env:computername to retrieve the 

local computer name. 

Using the Object Model 

In the previous task, you saw some examples of how you can assign local variables and then 

use the SharePoint object model to set properties and call methods on those variables. In this 

task, you will learn more about how to use the SharePoint object model in your Windows 

PowerShell scripts.  

 

When you start to use the object model, it is essential to be able to find out what methods and 

properties a particular object supports. Windows PowerShell includes a cmdlet named Get-

Member that can help. You can pass any object into the Get-Member cmdlet to return a list 

of the available properties and methods on that object. 

 



 

 

1. In the SharePoint 4.0 Management Console, type the command in the following code 

example, and then press ENTER. 

 
Get-SPSite | Get-Member 

 

The Command Prompt window displays a long list of the methods and properties that you 

can access on an SPSite object. 

 

 
 

You can experiment with the object model by writing property values to the screen. 

Remember to create a memory assignment before you create a local variable. 

 

2. Type the command in the following code example, and then press ENTER. 

 
Start-SPAssignment -Global 

 

3. Type the command in the following code example, and then press ENTER. 

 
$Site = Get-SPSite http://moss.contoso.com 

 

4. Type the command in the following code example, and then press ENTER. 

 
Write-Host $Site.Url 

  

The Command Prompt window displays the URL of the site collection. 

 

5. Type the command in the following code example, and then press ENTER. 

 
Write-Host $Site.Zone 

  

The Command Prompt window indicates that the site collection is in the Default zone. 

 

6. Type the command in the following code example, and then press ENTER. 

 
Write-Host $Site.Quota 

  

The site quota is a complex type that is not well represented by a string, so the Command 

Prompt window simply displays the type name of the SPQuota object. 

 

 



 

 

 

As before, you can use the Get-Member cmdlet to find out more about the SPQuota 

object. 

 

7. Type the command in the following code example, and then press ENTER. 

 
$Site.Quota | Get-Member 

  

 
 

8. Type the command in the following code example, and then press ENTER. 

 
$Site.Quota | Select StorageMaximumLevel 

  

The Command Prompt window shows a maximum site storage of zero, which indicates 

that the site does not have a usage quota assigned. As an administrator, you find this 

disturbing. You immediately establish a quota of 50 MB, together with a warning level of 

40 MB. 

 

9. Type the command in the following code example, and then press ENTER. 

 
$Site.Quota.StorageMaximumLevel = 52428800 

  

Note: 52,428,800 represents 50 MB in bytes.  

 

10. Type the command in the following code example, and then press ENTER. 

 
$Site.Quota.StorageWarningLevel = 41943040 

  

11. Open a browser window, browse to http://moss:6147/_admin/sitequota.aspx (the Site 

Collection Quotas and Locks page in the Central Administration Web site), and then 

verify that the site quotas have been properly set. 

 



 

 

 
 

Finally, when you have finished using the $Site variable, remember to clear the memory 

assignment. 

 

12. Type the command in the following code example, and then press ENTER. 

 
Stop-SPAssignment -Global 

  



 

 

Conclusion 

This lab provided an overview of how to use Windows PowerShell to script administrative 

tasks in SharePoint Server 2010. In particular, the lab explored: 

 

 How to get started with the SharePoint 4.0 Management Console. 

 How to use Windows PowerShell scripting techniques, such as pipes, filters, wildcard 

characters, and enumerations, for administration of SharePoint Server 2010. 

 How to assign variables and use the SharePoint object model from Windows 

PowerShell. 

 

For more information about SharePoint Server 2010, visit the SharePoint Products and 

Technologies team blog at http://blogs.msdn.com/sharepoint for regular announcements and 

updates. 

http://blogs.msdn.com/sharepoint

